Longitudinal Multi-Trait-State-Method Model Using Ordinal Data.

نویسندگان

  • R Shane Hutton
  • Sy-Miin Chow
چکیده

Multi-trait multi-method (MTMM) models provide a way to assess convergent and discriminant validity when multiple traits are measured by multiple methods. In recent years, longitudinal extensions of MTMM models have been proposed in the structural equation modeling framework to evaluate whether and how the trait as well as method factors change over time. We propose a novel longitudinal ordinal MTMM model that can be used to effectively distinguish volatile "state" processes from "trait" processes that tend to remain stable and invariant over time. The proposed model, termed a longitudinal multi-trait-state-method (LM-TSM) model, combines 3 key modeling components: (a) a measurement model for ordinal data, (b) a vector autoregressive moving average model at the latent level to examine changes in the state as well as the method factors over time, and (c) a second-order factor-analytic model to capture time-invariant traits as shared variances among the state factors across all measurement occasions. Data from the Affective Dynamics and Individual Differences (ADID; Emotions and Dynamic Systems Laboratory, 2010 ) study was used to illustrate the proposed longitudinal LM-TSM model. Methodological issues associated with fitting the LM-TSM model are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses

The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...

متن کامل

Transition Models for Analyzing Longitudinal Data with Bivariate Mixed Ordinal and Nominal Responses

In many longitudinal studies, nominal and ordinal mixed bivariate responses are measured. In these studies, the aim is to investigate the effects of explanatory variables on these time-related responses. A regression analysis for these types of data must allow for the correlation among responses during the time. To analyze such ordinal-nominal responses, using a proposed weighting approach, an ...

متن کامل

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

Bayesian mapping of genomewide interacting quantitative trait loci for ordinal traits.

Development of statistical methods and software for mapping interacting QTL has been the focus of much recent research. We previously developed a Bayesian model selection framework, based on the composite model space approach, for mapping multiple epistatic QTL affecting continuous traits. In this study we extend the composite model space approach to complex ordinal traits in experimental cross...

متن کامل

Modeling Paired Ordinal Response Data

 About 25 years ago, McCullagh proposed a method for modeling univariate ordinal responses. After publishing this paper, other statisticians gradually extended his method, such that we are now able to use more complicated but efficient methods to analyze correlated multivariate ordinal data, and model the relationship between these responses and host of covariates. In this paper, we aim to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Multivariate behavioral research

دوره 49 3  شماره 

صفحات  -

تاریخ انتشار 2014